初中数学知识点精选模板
相关文章
从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。下面小编为大家带来人教版初一数学的知识点,希望大家喜欢!
初中数学知识点精选模板 1
一、数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示.
基本思路:等差数列中涉及五个量:a1 ,an,d, n, sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an = a1+(n-1)d;
通项=首项+(项数一1) ×公差;
数列和公式:sn,= (a1+ an)×n÷2;
数列和=(首项+末项)×项数÷2;
项数公式:n= (an- a1)÷d+1;
项数=(末项-首项)÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末项-首项)÷(项数-1);
关键问题:确定已知量和未知量,确定使用的公式。
二、加法乘法原理和几何计数
加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。
关键问题:确定工作的完成步骤
基本特征:每一步只能完成任务的一部分。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度
①数线段规律:总数=1+2+3+…+(点数一1);
②数角规律=1+2+3+…+(射线数一1);
③数长方形规律:个数=长的线段数×宽的线段数:
④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数。
小升初数学知识点:加法乘法原理和几何计数
三、质数与合数
质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N= ,其中a1、a2、a3……an都是合数N的质因数,且a1……。
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
四、约数与倍数
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:
1、几个数都除以它们的最大公约数,所得的几个商是互质数
2、几个数的最大公约数都是这几个数的约数
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作(12,18)=6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;
18的倍数有:18、36、54、72……;
那么12和18的公倍数有:36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
最小公倍数的性质:
1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法。
20172017小升初数学复习重点大全 :约数与倍数
五、数的整除
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除
三、整除的性质:
1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
20172017小升初数学复习重点大全 :数的整除
六、余数问题
余数的性质:
①余数小于除数。
②若a、b除以c的余数相同,则c|a-b或c|b-a。
③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。
④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数
余数、同余与周期
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1(mod p)。
数学是小升初考试中的一个重要科目,所以我们在小升初总复习的时候,都会把数学作为一个重点。因为相对于其他科目来说,数学是拉分比较大的一个科目。为了使大家能够更好的复习,我们为大家整理了20__年小升初数学常见知识点,仅供参考。
初中数学知识点精选模板 2
1、归纳推理:顾名思义,一个归纳的过程。比如,一个篮子里有苹果梨葡萄草莓等等,那么你发现苹果是水果、梨是水果、葡萄是水果、草莓是水果,然后你猜想:篮子里装的是水果。这个推理是由特殊推到一般的过程,可能正确也可能不正确,如果篮子里确实都是水果,那么你就猜对了;如果篮子里有一根胡萝卜,那你就猜错了。所以才会有证明。
2、类比推理:同样顾名思义,一个类比的过程。例如,你知道苹果水分多又甜、梨水分多又甜、葡萄水分多又甜,所以你推理出同样作为水果,香蕉水分多又甜,那这个结论显然是不对的,香蕉并没有什么水分。但如果你推导出荔枝水分多又甜,这就是正确的。(这个例子中指的都是正常水果)显然,这个推理方式是一个由特殊推特殊的过程,也不一定正确。
3、演绎推理:一般推特殊,一定对。例如,f(x)=1,那么f(1)=1
初中数学知识点精选模板 3
初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化所学内容的关键环节。重视并认真完成这个阶段的教学任务,不仅有利于升学学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且有利于就业学生的实际运用。同时是对学习基础较差学生达到查缺补漏,掌握教材内容的再学习。因此特制订本计划,以便实施教学总复习有计划、有步骤。
一、紧扣大纲,精心编制复习教案
初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划。计划的编写必须切合学生实际。可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。然后按测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定计划的重点。复习计划制定后,要做好复习课例题的选择、练习题配套作业筛眩教师制定的复习计划要交给学生,并要求学生再按自己的学习实际制定具体复习规划,确定自己的奋进目标。
我们在组织全组老师编写资料的时候,围绕着以下三点构想:
1、全面性 虽然我们不敢说“一册在手,别无所求”,但我们坚信对你是有多多少少帮助的。由于我们围绕着:
①对考试的热点作认真分析;
②对知识点做细致整理;
③对2005中考的动态分析等编制理念,同时,我们在编制安排上本着:着眼于操作;立足于中考;服务于学生等想法,按照分课时将教案和学案在一本中设计的原则,使我们老师在使用的时候能有很全面的借鉴价值。
2、可操作性 我们在整个复习中,设置三个阶段
①基础知识积累阶段:题目的难度大概是中考题目中的70%的基础题目;
②专项知识整理阶段:题目的难度大概是中考题目中的20%———30%的应用题目;
③实战演练阶段(借助一份中考试卷的解答指导试卷的解读技巧)
3、互动性 在编制这本复习书的时候,为了充分体现在教师主导下的学生主体地位,真正让学生成为学习的主人,我们在设计的时候,开辟四个特色栏目:“自我诊断”“警钟长鸣”“师生对话”“机动园地”,以便我们老师在使用的时候能找到非智力因素等课程资源。
4、资料新 我们这本复习用书中的所有例习题,均来源于
①从2004年各地中考题中采用优中选优的原则选择50% ,
②从其他有关资料中精选20% ,
③我们学校老师原创自编习题约占30% 、
二、追本求源,系统掌握基础知识
总复习开始的第一阶段(2月21号——3月27号),首先必须强调学生系统掌握课本上的基础知识和基本技能,过好课本关。对学生提出明确的要求:
①对基本概念、法则、公式、定理不仅要正确叙述,而且要灵活应用;
②对配备的练习题必须逐题过关;
③每章后的复习题带有综合性,要求多数学生必须独立完成,少数困难学生可在老师的指导下完成。
三、系统整理,提高学生复习效率
总复习的第二阶段(3月27号——4月20号),要特别体现教师的主导作用。对初中数学知识加以系统整理,依据基础知识的相互联系及相互转化关系,梳理归类,分块整理,重新组织,变为系统的条理化的知识点。例如,初三代数可分为函数的定义、正反比例函数、一次函数;一元二次方程、二次函数、二次不等式;统计初步三大部分。几何分为4块13线:第一块为以解直角三角形为主体的1条线。
初中数学知识点精选模板 4
一 线和角
(1)线
直线
直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
射线
射线只有一个端点;长度无限。
线段
线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
平行线
在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
垂线
两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角
(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类
锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。
周角:角的一边旋转一周,与另一边重合。周角是360°。
初中数学知识点精选模板 5
1、综合法:即我们正常的证明过程,由条件一直往下推。
例如,1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量,证明:2菠萝重量=160葡萄重量。
证明:因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量
____________所以1菠萝的重量=4_20葡萄重量=80葡萄重量
____________所以2菠萝重量=160葡萄重量。
2、分析法:由结论推出等价结论,去证明这个等价结论成立。
同样上面的例子的证明:要证明2菠萝重量=160葡萄重量,即证明2_1菠萝重量=2_80葡萄重量,即证明1菠萝重量=80葡萄重量。
因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量
所以1菠萝的重量=4_20葡萄重量=80葡萄重量,原式即证。
3、反证法:先假设结论相反,然后根据已知推导,最后发现和已知不符,收!这是一个战胜自己的过程!
4、数学归纳法:
初中数学知识点精选模板_精选范文网




