首页 > 学习方法 > 各学科学习方法 > 数学学习方法

高中数学必修知识点归纳经典合集

发布时间: 浏览量:1

高中数学虽然没有高数那么深层次,但也比初中数学难很多,为帮助大家提高数学分数,下面小编为大家带来高中数学重点知识点总结,希望大家喜欢!

高中数学必修知识点归纳经典合集 1

一、数学公式定理掌握好

基本的是做课本上的例题,课本上的例题思路比较简单,一个知识点对应的一个例题,把这些例题看过一遍后,能自己做出来,做题过程是最好的记忆数学公式定理的过程,这一步不能省,不要想办法背数学公式定理,只有边用边记忆,才能真正的理解和应用。

课本上的例题做完,接着课后练习也要跟着做,课后练习的一些题目是综合题,把新的知识点和前面学过的知识点结合起来,帮助进步一步学习和巩固。

二、进行专题、难题训练提高

做题的时候不要怕难题,有的学生看到难题就放下来,一直练习自己会做的题目,这样很难得到提高,可以尝试多做难题,不要有畏惧心理,如果一直不去攻克难题,那考试分数肯定提不上来。

首先,看到难题要大胆的去做,思维活跃起来,多想知识点,这个方法不行,没关系,再分析,再审题,找其他的方法,如果一直不会,可以参考答案,看看答案里是怎样答题的,解题思路是什么样的,里面的解题方法是自己不会的还是自己会的没有想到的,然后自己去总结去反思。

三、记错题、看错题、解错题

高中数学建议准备一个错题本,特别是高三的学生!高中一般的错题都是学生这道题考的知识点没有掌握好,或者不知道这种题型该如何去解答,基本上没有因为计算失误而出现的错题了。

高中数学必修知识点归纳经典合集 2

选修Ⅰ(141个)

一、集合、简易逻辑(14课时,8个)

1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数(30课时,12个)

1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数、12、函数的应用举例。

三、数列(12课时,5个)

1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数(46课时,17个)

1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面向量(12课时,8个)

1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移、

六、不等式(22课时,5个)

1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。

七、直线和圆的方程(22课时,12个)

1、直线的倾斜角和斜率;2、直线方程的.点斜式和两点式;3、直线方程的一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线(18课时,7个)

1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。

九、直线、平面、简单何体(36课时,28个)

1、平面及基本性质;2、平面图形直观图的画法;3、平面直线;4、直线和平面平行的判定与性质;5、直线和平面垂直的判定与性质;6、三垂线定理及其逆定理;7、两个平面的位置关系;8、空间向量及其加法、减法与数乘;9、空间向量的坐标表示;10、空间向量的数量积;11、直线的方向向量;12、异面直线所成的角;13、异面直线的公垂线;14、异面直线的距离;15、直线和平面垂直的性质;16、平面的法向量;17、点到平面的距离;18、直线和平面所成的角;19、向量在平面内的射影;20、平面与平面平行的性质;21、平行平面间的距离;22、二面角及其平面角;23、两个平面垂直的判定和性质;24、多面体;25、棱柱;26、棱锥;27、正多面体;28、球。

十、排列、组合、二项式定理(18课时,8个)

1、分类计数原理与分步计数原理;2、排列;3、排列数公式;4、组合;5、组合数公式;6、组合数的两个性质;7、二项式定理;8、二项展开式的性质。

十一、概率(12课时,5个)

1、随机事件的概率;2、等可能事件的概率;3、互斥事件有一个发生的概率;4、相互独立事件同时发生的概率;5、独立重复试验。

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1、离散型随机变量的分布列;2、离散型随机变量的期望值和方差;3、抽样方法;4、总体分布的估计;5、正态分布;6、线性回归。

十三、极限(12课时,6个)

1、数学归纳法;2、数学归纳法应用举例;3、数列的极限;4、函数的极限;5、极限的四则运算;6、函数的连续性。

十四、导数(18课时,8个)

1、导数的概念;2、导数的几何意义;3、几种常见函数的导数;4、两个函数的和、差、积、商的导数;5、复合函数的导数;6、基本导数公式;7、利用导数研究函数的单调性和极值;8、函数的最大值和最小值。

十五、复数(4课时,4个)

1、复数的概念;2、复数的加法和减法;3、复数的乘法和除法;4、复数的一元二次方程和二项方程的解法。

高中数学必修知识点归纳经典合集 3

简单随机抽样

(1)总体和样本

①在统计学中 , 把研究对象的全体叫做总体。

②把每个研究对象叫做个体。

③把总体中个体的总数叫做总体容量。

④为了研究总体的有关性质,一般从总体中随机抽取一部分: x1,x2 , …,_ 研究,我们称它为样本。其中个体的个数称为样本容量。

(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随

机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:

①抽签法;

②随机数表法;

③计算机模拟法;

③使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:

①总体变异情况;

②允许误差范围;

③概率保证程度。

(4)抽签法:

①给调查对象群体中的每一个对象编号;

②准备抽签的工具,实施抽签;

③对样本中的每一个个体进行测量或调查

(5)随机数表法

高中数学必修知识点归纳经典合集 4

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a

根与系数的关系X1+X2=-b/aX1_X2=c/a 注:韦达定理

判别式b2-4a=0 注:方程有相等的两实根

2-4ac>0 注:方程有一个实根

2-4ac<0 注:方程有共轭复数根

三角函数公式

两角和公式

in(A+B)=sinAcosB+cosAsinB

in(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

in(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

inA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n_2

2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py

直棱柱侧面积S=c_h

斜棱柱侧面积S=c'_h

正棱锥侧面积S=1/2c_h'

正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l

球的表面积S=4pi_r2

圆柱侧面积S=c_h=2pi_h

圆锥侧面积S=1/2_c_l=pi_r_l

弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r

锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h

斜棱柱体积V=S'L 注:其中S'是直截面面积,L是侧棱长

柱体体积公式;V=s_h圆柱体V=pi_r2h

正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径

余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角

圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标

圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

抛物线标准方程y^2=2pxy^2=-2p_^2=2pyx^2=-2py

直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h

正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2

圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l

弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r

锥体体积公式V=1/3_S_H

斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s_h圆柱体V=pi_r2h

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

半角公式

in(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B))

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

inA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

2+4+6+8+10+12+14+…+(2n)=n(n+1)5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

常用导数公式

1、y=c(c为常数)y'=0

2、y=x^ny'=nx^(n-1)

3、y=a^xy'=a^xlna

4、y=e^xy'=e^x

5、y=logaxy'=logae/x

6、y=lnxy'=1/x

7、y=sinxy'=cosx

8、y=cosxy'=-sinx

9、y=tanxy'=1/cos^2x

10、y=cotxy'=-1/sin^2x

11、y=arcsinxy'=1/√1-x^2

12、y=arccosxy'=-1/√1-x^2

13、y=arctanxy'=1/1+x^2

14、y=arccotxy'=-1/1+x^2

高中数学必修知识点归纳经典合集 5

一、直线与方程高考考试内容及考试要求:

考试内容:

1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;

考试要求:

1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;

二、直线与方程

课标要求:

1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。

要点精讲:

1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴平行或重合时,规定α= 0°.

倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.

2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα

(1)当直线l与x轴平行或重合时,α=0°,k = tan0°=0;

(2)当直线l与x轴垂直时,α= 90°,k 不存在。

由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。

3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:

(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。

4.两条直线的平行与垂直的判定

(1)若l1,l2均存在斜率且不重合:

①;②

注: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。

(2)

若A1、A2、B1、B2都不为零。

注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。

两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。

5.直线方程的五种形式

确定直线方程需要有两个互相独立的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

6.直线的交点坐标与距离公式

(1)两直线的交点坐标

一般地,将两条直线的方程联立,得方程组

若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行。

(2)两点间距离

两点P1(x1,y1),P2(x2,y2)间的距离公式

特别地:轴,则、轴,则

(3)点到直线的距离公式

点到直线的距离为:

(4)两平行线间的距离公式:

若,则:

注意点:x,y对应项系数应相等。

TAG标签: 数学 学习方法

高中数学必修知识点归纳经典合集_精选范文网

高中数学虽然没有高数那么深层次,但也比初中数学难很多,为帮助大家提高数学分数,下面小编为大家带来高中数学重点知识点总结,希望大家喜欢!高中数学重点知识点总结1、向量的加法向量的加法满足平行四边形法则和
推荐度:
点击下载文档文档为doc格式