初中数学的常考知识点经典合集
相关文章
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。下面小编为大家带来九年级数学知识点总结,希望大家喜欢!
初中数学的常考知识点经典合集 1
1.1正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义
1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行。
有理数减法法则:
减去一个数,等于加这个数的相反数。
a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。 (ab)c=a(bc)
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。 a(b+c)=ab+ac
数字与字母相乘的书写规范:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
ax+bx=(a+b)x
上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。 括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。 括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2有理数的除法
有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a〃1
(b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于
0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
1.5有理数的乘方
?1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同极运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。
第二章 整式加减 一、代数式与有理式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 2、整式和分式统称为有理式。
3、含有加、减、乘、除、乘方运算的代数式叫做有理式。
二、整式和分式
1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
2、有除法运算并且除式中含有字母的有理式叫做分式。
三、单项式与多项式
1、没有加减运算的整式叫做单项式。(数字与字母的积---包括单独的一个数或字母)
2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。
单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或?1。 6、单独的一个数字是单项式,它的系数是它本身。 7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。 9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或?1时,通常省略数字“1”。 12、单项式的次数仅与字母有关,与单项式的系数无关。 多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。 3、多项式中不含字母的项叫做常数项。 4、一个多项式有几项,就叫做几项式。 5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。 整式
1、单项式和多项式统称为整式。 2、单项式或多项式都是整式。 3、整式不一定是单项式。 4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。 合并同类项:
1).合并同类项的概念:
把多项式中的同类项合并成一项叫做合并同类项。 2).合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3).合并同类项步骤:
a.准确的找出同类项。
.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 c.写出合并后的结果。 4).在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0. b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
1)列出代数式:用括号把每个整式括起来,再用加减号连接。 2)按去括号法则去括号。 3)合并同类项。
4、代数式求值的一般步骤: (1)代数式化简 (2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
第三章 一元一次方程
2.1从算式到方程 2.1.1一元一次方程
含有未知数的等式叫做方程。 只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2.1.2等式的性质
等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。 等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2从古老的代数书说起――一元一次方程的讨论⑴
把等式一边的某项变号后移到另一边,叫做移项。
2.3从“买布问题”说起――一元一次方程的讨论⑵
方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。 解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
去分母:
⑴具体做法:方程两边都乘各分母的最小公倍数 ⑵依据:等式性质2
⑶注意事项:①分子打上括号
②不含分母的项也要乘
2.4再探实际问题与一元一次方程
2.5列方程解应用题的常用公式:
(1)行程问题: 距离=速度?时间 速度(2)工程问题: 工作量=工效?工时 工效
(3)比率问题: 部分=全体?比率 比率
部分全体
全体
部分比率
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价?折?1 ,利润=售价-成本,
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=1πR2h.
3
第四章 图形认识初步
3.1多姿多彩的图形
现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
3.1.1立体图形与平面图形
长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
3.1.2点、线、面、体
几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。面有平的面和曲的面两种。 面和面相交的地方形成线。 线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
3.2直线、射线、线段
经过两点有一条直线,并且只有一条直线。 两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似
的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。简单说成:两点之间,线段最短。
3.3角的度量
角也是一种基本的几何图形。
度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。 3.4角的比较与运算 3.4.1角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。 3.4.2余角和补角
如果两个角的和等于90(直角),就说这两个角互为余角。 如果两个角的和等于180(平角),就说这两个角互为补角。 等角的补角相等。 等角的余角相等。 本章知识结构图
从不同方向看立体图形立体图形展开立体图形几何图形平面图形角的度量角角的大小比较余角和补角角的平分线等角的补角相等等角的余角相等平面图形直线、射线、线段。
初中数学的常考知识点经典合集 2
一、统计表
1、意义
把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
2、组成部分
一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。
3、种类
①单式统计表:只含有一个项目的统计表。
②复式统计表:含有两个或两个以上统计项目的统计表。
③百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。
4、制作步骤
①搜集数据:通过查阅资料、询问她人、调查、实验等方法搜集数据。
②整理数据:要根据制表的目的和统计的内容,对数据进行分类。
③设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。
④正式制表:把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。
初中数学的常考知识点经典合集 3
角的性质:
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
时针问题:
时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟差5.50。
时针与分针夹角=分×5.50—时×300(分针靠近12点)
时针与分针夹角=时×300—分×5.50(时针靠近12点)
若结果大于1800,另一角度用3600减这个角度。
经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。
角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
多边形
由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n—2)个三角形。n边形内角和等于(n—2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n—2)×1800 / n
过n边形一个顶点有(n—3)条对角线,n边形共(n—3)×n / 2条对角线。
圆、弧、扇形
圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心
弧:圆上A、B两点之间的部分叫做圆弧,简称弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫圆心角。
初中数学的常考知识点经典合集 4
1二元一次方程组
1.定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
2.二元一次方程组的解法
(1)代入法
由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法
在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法
将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法
当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
2不等式的判定
1.常见的不等号有“>”“<”“≤” “≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
2.在不等式“a>b”或“a<b”中,a叫作不等式的左边,b叫作不等式的右边;< div="">
3.不等号的开口所对的数较大,不等号的尖头所对的数较小;
4.在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等。
3二次函数的性质
1.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
2.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点;
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
4三角形中位线定理的作用
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
5圆
1.在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。
2.径
连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。在同一个圆中,圆的直径 d=2r。
3.弦:连接圆上任意两点的线段叫做弦。
在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
4.弧:圆上任意两点间的部分叫做圆弧。
5.圆的垂径定理
(1)垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦作对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
6.圆的切线定理
(1)垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。
(2)切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
7.圆的周角定理
(1)圆周角的度数等于它所对的弧的度数的一半。
(2)一条弧所对的圆周角等于它所对的圆心角的一半。
(3)“等弧对等角”、“等角对等弧”。
(4)“直径对直角”、“直角对直径”。
初中数学的常考知识点经典合集 5
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)。
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高。
3、a—边长,S=6a2,V=a3。
4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc。
5、棱柱S—h—高V=Sh。
6、棱锥S—h—高V=Sh/3。
7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6。
9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。
10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。
11、r—底半径h—高V=πr^2h/3。
12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6。
14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3。
15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。
16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。
17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。
初中数学的常考知识点经典合集_精选范文网




