首页 > 学习方法 > 各学科学习方法 > 数学学习方法

初三数学的学习方法有哪些经典整理

发布时间: 浏览量:1

  由于小学六年级学生的智力水平不一样,家庭教育及社会环境也不同,每个学生对于数学的理解力、学习兴趣和领悟上都有很大的区别,因此学生对数学掌握水平参差不齐。下面是小编给大家带来的六年级数学学习方法和重点难点,希望能够帮助到大家!

初三数学的学习方法有哪些经典整理 1

  1、数学课程标准的变化;

  2、历年中考试题中展现出来的“相对稳定”的特点。

  我们要对考试大纲和说明我们要加以重视,如对来年中考试题预测时,我们需要参考以往的考试说明和大纲上的内容和要求上的变化。此外,近几年中考试题自身呈现的相对稳定的特点,在某种程度上体现了课程标准突出强调的内容,体现重点内容重点考查的命题基本原则。

  因此,充分了解初中数学基本结构,关注中考试题特点,有助于我们掌握来年中考试题发展趋势。如初中数学学习包含以下四大部分:

  一、数与代数部分

  数与代数部分一般包含:数与式、方程(组)与不等式(组)、函数等几个部分。

  1、数与式

  综观近年来中考“数与式”部分的试题,关于“数与式”考查还会主要为基础性题目集中在基础知识与基本技能方面。以“数与式”内容为依托,加强数学理解能力的考查也越发凸显。

  2、方程(组)与不等式(组)

  关注解方程(组)与不等式(组)的基本技能。综观历年中考题,都是针对解方程(组)与不等式(组)这一基本技能编制的试题,其解法的是课程标准中要求掌握的。

  近年来围绕学生的创新意识,中考试题在开放性增强的同时注重考查了学生思维的严谨性与灵活性,因此,要注重学生对数学事实的真正理解。

  关注数学模型思想,考查数学应用意识和能力,因此,以当地热点话题为背景,体现“问题情境—建立模型---求解---解释与应用”这一过程。

  3、函数

  关注函数概念及表达方式,函数与方程、不等式之间的关系。利用函数思想及函数模型解决相关问题也会是考查重点。

  近些年试题开放性、灵活性、综合性是一种命题趋势。如数形结合的思想一直是重点考查内容。

  二、空间与图形部分

  “空间与图形”部分考查的内容,主要包括图形的性质、分类、度量,以及对图形基本性质的证明;图形的平移、旋转、轴对称变换;运用坐标描述图形的位置和运动,其中考查的重点是“可以从复杂几何图形中分解出基本图形”的能力,以及对“图形变换时研究几何问题的工具和方法”、“数学是研究数量关系和空间形式的科学”思想的领悟程度及综合应用水平。

  在以上关于“图形的性质”、“图形的变化”、“图形与坐标”中所反映出来的特色基础上,将更加关注空间概念、几何直观、推理能力、应用意识等核心问题,关注“合情推理和演绎推理”的关系,更加强调可以在新的问题情境下,合理选择已有的数学活动经验,在图形的运动和变化过程中,探索图形的性质,感悟数学思想的精髓。

  三、概率与统计部分:

  (一)统计

  1、对统计技能的考查是基础,注重统计知识之间的联系性。

  2、注重考查统计活动的完整性。

  3、关注应用,对统计思想的考查蕴含在统计活动中,注重考查利用统计数据作出决策的能力。

  (二)概率

  (1)针对概率意义的考查更简约。

  通过实验,可以获得事件发生的概率。当大量重复实验时,频率可以作为i事件发生的概率,如果学生不理解概率的意义,将概率知识与确定性数学知识混淆。

  (2)对列举法和树状图法的考查是主旋律,并注重利用所得的数据作出决策。再有一种变式是将几何概型问题通过区域划分转化为等可能事件的概率问题。

  (3)在综合应用中,考查学生对概率知识的掌握程度。

  概率的最大特点是其应用性,不但可以和现实生活中的问题紧密相连,还可以和其他领域的知识紧密结合。

  四、实践与综合应用部分

  一、命题内容及趋势:

  (1)、从数量角度反映变化规律的函数类题型:

  (2)、以直角坐标系为载体的几何类题型:

  (3)、以“几何变换”为主体的几何类题型:

  (4)、以“存在型探索性问题”为主体的综合探究题:

  (5)、以“动点问题”为主的综合探究题:

  中学数学核心概念、思想方法是数学知识的精髓,也势必会成为考查综合应用能力的重要载体,这包括方程、不等式、函数,以及基本几何图形的性质、图形的变化、图形与坐标知识之间横纵向的联系,也包括中学数学中常用的重要数学思想。如:函数与方程思想、数形结合、分类讨论思想很化归与转换思想。而数学基本方法是数学的具体表现,具有模式化和可操作性,常用的基本方法有配方法、换元法、待定系数法、归纳法和割补法。

  数学过程中要有意识地将多个知识点进行“组合”与“串接”一些有针对性的、适合自己来练习的综合题,或者精选一些比较经典的试题,有目的的将它们进行剪裁、组合与改编,特别是专题复习阶段,更要能静心、精心、精选,以题为载体,以题论法。

初三数学的学习方法有哪些经典整理 2

  1.抓住课堂。科学注重和平时的研究,不适合突如其来的回顾。老师讲的每一堂课,浓度,倾听,跟随老师的想法。多听,多记老师所说的数学思想和学习方法。不要把你的思维局限在某个问题上。例如,“转换思想”和“数与形的结合”等思维方法远比解决某一问题更为重要。

  2.高质量的完成作业。所谓的高质量是指高精度和高速度。

  在做作业时,有时重复相同类型问题的练习,必须有意识地检查速度和准确性,并且在每次做完这些问题时都能更深入地思考这些问题。如检查其内容、运用数学思维方法、解决问题的规律、技巧等.除了老师布置要考虑认真完成。如果你不轻易放弃的话,你应该在任何时候都带着“钉子”的精神,沉思冥想。灵感总是在不知不觉中来到你身边。更重要的是,这是一个挑战自己的机会。

  成功带来信心,这对学习科学是很重要的,而且它也促使你一次又一次地面对更多的困难挑战。甚至失败,真相也会给你留下深刻的印象,让你在不知不觉中当碰到同样的问题会反思错误的原因,今后如何避免。

  3.认真思考,多问问题。首先,老师给出了规律和定理,不仅是为了“知道它是什么”,而且也是为了“知道为什么”。如果你不了解你的学习,你应该知道它的根源。第二,学习任何学科应该持怀疑态度,特别是在科学。教师的讲解和教材内容都存在问题。确保不要堆积如山的问题,并完成这一天。简而言之,思考和提问是清除学习隐患的最好方法。

  总结比较,梳理你的思绪

  (1)知识点的归纳与比较。在你学习完每一章之后,你应该对这一章的内容做一个框架图,或者在你的脑海中仔细阅读,以理清它们之间的关系。对于相似和混淆的知识点需要进行分类和比较,有时可以用联想法加以区分。

  (2)课题的总结比较。学生可以建立自己的题库。一个是错误的问题,另一个是一个很好的问题。对于常见的作业或考试错误,请写下所选的内容,并在笔记的一侧写上红色的笔。在考试之前,只需要读红笔的内容。还有一些非常聪明或困难的问题需要记录,并且使用红笔来注释本主题的所有方法和思想。随着时间的推移,我可以总结出一些解决问题的规律,也可以用红笔写下这些规律。最后,它们将成为你宝贵的财富,对你的数学学习有很大的帮助。

  4.课外实践的选择。课余时间对小学生来说是非常宝贵的。当课外锻炼越来越少和更好的时候,也是如此。每种类型的问题都掌握了学习的方法,只要每天问两三道问题,日子里,你就会打开很多想法。

  正确的学习方法是很重要的,但更重要的是毅力,最好的的精神。只要你多思考,多提问,把这种学习态度融入你的生活,你一定能够学好每一门课程。相信自己,掌握学习方法,你就会对所有的学习和激情感兴趣。

  5.学会主动预习。认真阅读教材,养成主动预习的习惯,在讲解新知识之前,是获取数学知识的重要手段。因此,培养自学的能力,在老师的指导下学会读一本书,和老师精心设计考虑预览。

  例如,当自学例子时,我们应该弄清楚例子的内容是什么,告诉了什么条件,要求了什么,如何在书中回答它们,为什么要这样回答,是否有新的解决方案和解决它们的步骤是什么。把握这些重要问题,三思而后行,学会运用现有知识自主探索新知识。

  有些家长感到头疼的是他们的孩子在课堂上效率低下,主要原因是他们没有一个好的预习。

  6.听课不要仅仅是听,重要的是要思考。

  一些学生的公式,自然的法则,如相当熟悉,但实际的问题,但不知道如何开始,我不知道如何应用他们的知识来解决这个问题。如果有这样的问题,让学生解答:“从立方体的高度移除2厘米后,它就变成了一个立方体。它的表面积减少了48平方厘米。立方体的体积是多少?”

  虽然学生对数学公式的记忆量很好,但由于问题涉及知识的广泛性,许多学生无法解决问题的思维,这就要求学生在教师的指导下,逐步掌握解决问题的思维方法。这个问题指的是长度单位、面积单位、矩形的图形、正方形、长方体、立方体;

  因此,在课堂上,教师最大的作用是:激励;孩子们在课堂上用老师的思想,依靠老师的指导,思考解决问题的想法;答案真的不重要;重要的是方法!

  7.及时总结解决问题的法律。一般说来,数学问题的解决是有规律可循的。在解决问题时,要注意总结问题解决的规律。在解决每一项练习后,我们应注意以下几个问题:

  (1)主题的最重要特征是什么?

  (2)解决方案的基本知识和基本图形?

  (3)如何观察、联想和转换话题?

  (4)用什么数学思想和方法来解决这个问题?

  (5)解决这一问题的最关键步骤是什么?

  (6)你有类似的主题主题?解决方案和思维方式有什么异同?

  (7)在这个问题上你能找到多少解决办法?哪一个是最好的?哪种解决方案是一种特殊技能?你能总结在什么情况下使用?

  把一系列问题贯穿于问题解决的各个方面,逐步提高和坚持,儿童的心理稳定性和应对问题的能力能够不断提高,他们的思维能力就会得到锻炼和发展。

  8.拓宽解题思路。

  在教学中,教师经常为学生设置疑问,提出问题,激励学生多思考,此时学生应积极思考,拓宽思路,使广义思维更好地发展。

  这样才能更好地启发学生思考,沟通知识之间的纵向和横向关系,改变解决问题的方法,拓宽学生解决问题的思维,培养学生思维的灵活性。

  9.充分发挥错题本的作用。每个学生都准备一本“记忆错误手册”,在平时的作业、单元测试或期中考试、期末考试中记录错误,并指出错误的原因,这样就纠正错误,以后也不会发生类似的错误。在实际的学习中,平时常看这本书,做到心中有数。

  有许多学习好的同学,因为他们使用错误的标题积极,并取得了高分。

初三数学的学习方法有哪些经典整理 3

  1、学会主动预习

  新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,学习数学需要培养自学能力,学会在老师的引导下看书,带着老师精心设计的思考题去预习。

  自学预习的时候,要弄清例题讲的什么内容,告诉了哪些条件,求的是什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的?抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  2、听课不仅是听更要思考

  老师在课堂上最大的作用是启发,而孩子在课堂上要紧跟老师的思路,靠着老师的引导,去思考解题的思路。答案真的不重要,最重要的是方法。

  3、及时总结解题规律

  解答数学问题的时候是有规律可循的。在解题时,要注意总结解题规律,解决每一道练习题后,要注意回顾以下几点问题:

  ①本题最重要的特点是什么?

  ②解本题用了哪些基本知识与基本图形?

  ③本题你是怎样观察、联想、变换来实现转化的?

  ④解本题用了哪些数学思想、方法?

  ⑤解本题最关键的一步在那里?

  ⑥你做过与本题类似的题目吗,在解法、思路上有什么异同?

  ⑦本题你能发现几种解法,其中哪一种最优,你能总结在什么情况下采用吗?

  4、拓宽解题思路

  在教学中,老师会经常给学生设置疑点、提出问题,启发学生多思多想,这时学生要积极思考、拓宽思路,使思维的广阔性得到较好的发展。

  充分发挥错题本的作用 可以给孩子准备一个"错题本",把平时作业、单元测试或期中期末考试中出现的错误记录下来,并注明出错原因,做到有错必改,以后不再犯类似的错误。

  5、使用"1x5"学习法

  我们每做一道题,就要有做一道题的收获,过分的题海战术只会有害而无益。我们要引导孩子做题的时候从以下五个方面思考:

  ①这道题考查的知识点是什么?

  ②为什么要这样解答?

  ③我是如何想到的?

  ④还可以怎样做,有其它方法吗?

  ⑤看看这道题还有几种变化的形式?

  6、写作业不能急于求成

  很多孩子在作业过程中,存在求速的心理状态,审题时走马观花粗心大意,对于做错的题目上,我们要引导学生形成错题分析法。分析的目的在于让学生充分认识到由于不正确的阅读导致的解题错误,从而形成要正确阅读的内部动机,学会仔细审题,真正弄懂题意。

初三数学的学习方法有哪些经典整理 4

  首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”

  学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。

  这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。

  可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。

  有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。

  知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实际上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要著重学习各种转化方式,培养转化的能力。

  总而言之,在学习数学基础知识中,要注意把握知识的整体精髓,悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含著人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。

  数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。

  在数学学习中,要特别重视运用数学知识解决实际问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。

  培养数学应用能力,首先要养成将实际问题数学化的习惯;其次,要掌握将实际问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。

  如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实际问题,那么,我们就走在了一条数学学习成功的大道上。

  接下来,分享数学学习三部曲:

  一、动手试一试:动手有助于消化学习过的知识,做到融会贯通。课下,应该把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自己对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。

  二、 思考:思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的 突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。

  三、 培养创造精神:所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,在听懂了老师讲的 方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。

  科学的学习方法在课内课外应注意些什么呢?

  第 一,认真听老师讲课。

  这是取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝 听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。上课还要积极举手发言,举手发言的好 处可真不少:①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、 眼到、耳到、心到。

  第二,课外练习。

  孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是 准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。可以在开始做作业时定好闹钟, 放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。

  第 三,复习、预习。

  对数学的复习,预习可以定在每天晚上,在完成当天作业后,再将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在 床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,可以翻翻书,直到搞懂为止。每个星期天还要作一星期功课的小结复习、预习。这样 对学数学有好处,并掌握得牢固,就不会忘记了。

  第四,提高。

  在完成作业和预习、复习之后,就做一些爬坡题。做这类题,尽可能自己独立思考,努力找出隐藏的条件,这是解题的关键。如果实在想不出来就需要看一看参考书,以及请教师长和同学。总之,要做到多看、多做、多问、虚心、勤奋,保持积极向上的精神这才是关键的关键。

初三数学的学习方法有哪些经典整理 5

  抓好基础是关键

  数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。

  严防题海战术

  做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

  归纳数学大思维

  数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。

  积累考试经验

  本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。

  高中数学到底应该怎么学?

  第一,要想自己的成绩能够有所好转,就要清楚的认识到自己的薄弱点。找到相对来说对自己比较困难的知识点,对症下手,找出相应知识点的基本例题,认真学习该知识点的应用方法与解题套路。学习时不要着急,知识点也要一个一个去攻克,对于难度比较大的,例如函数和圆锥曲线等,可以分多次解决,千万不能急躁。

  第二,要把重心放到课本的基础内容上。本来初中的基础就不好,到了高中如果还一味的追求难题的答题率是非常不现实的。所以在高一学习时,要重点学习课本的基础知识,各种定义、性质是必须要记熟练的,还有课本的各种例题和课后题,需要特别注意。它们都是相应知识点的最基本的考查套路,要深入研究这些题目,尽量掌握他们的解题方法。 同时,还要做好课前准备工作。高中数学要学习的知识非常的多,老师讲课也会比初中快好多,所以一定要养成课前预习的习惯。 数学基础本来就不好,接受知识肯定也会比较慢,如果再不提前预习,课堂上肯定会跟不上老师的节奏。预习时,最好能扎下心去,能够对知识有自己的一个理解和思路,哪里不懂标注出来,上课时根据标注内容重点听老师讲,做好相应的笔记。这样才能把各种知识掌握到位,学习效率才会更高。

  第三,要学会给自己制定一些小目标,以此激励自己。对于数学基础比较差的同学来说,学习数学的过程是困难且乏味的,要想对数学提起兴趣,最好能给自己制定一些小目标,增强自己的自信心。同时,目标的确立要合理,要根据自己的实际学习情况制定,要比较容易实现的。这样你才能不断地获得满足感,才能有前进的动力,才能在学习数学的过程中不断进步。

TAG标签: 数学 学习方法

初三数学的学习方法有哪些经典整理_精选范文网

由于小学六年级学生的智力水平不一样,家庭教育及社会环境也不同,每个学生对于数学的理解力、学习兴趣和领悟上都有很大的区别,因此学生对数学掌握水平参差不齐。下面是小编给大家带来的六年级数学学习方法和重点难点,希望能够帮助到大家
推荐度:
点击下载文档文档为doc格式