首页 > 学习方法 > 通用学习方法 > 学习经验

数学七年级下册知识点范文参考

发布时间: 浏览量:4

此书名为“知识不是力量”,目的不是要宣扬知识无用论,而是希望借此名重新思考学习的本质;下面小编给大家分享一些北师大版数学二年级知识,希望能够帮助大家,欢迎阅读!

数学七年级下册知识点范文参考 1

第三单元复式统计表

1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。

2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。

第四单元两位数乘以两位数

口算乘法

1、两位数乘一位数的口算方法:

(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加

(2)在脑中列竖式计算。

2、整百整十数乘一位数的口算方法:

(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。

(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。

(3)在脑中列竖式计算。

3、一个数与10相乘的口算方法:

一位数与10相乘,就是把这个数的末尾添上一个0。

4、两位数乘整十数的口算方法:

先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。

小技巧:口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

如:30×500=15000可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000

笔算乘法

先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。

注意事项

1.估算:18×22,可以先把因数看成整十、整百的数,再去计算。

→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

2、有大约字样的一般要估算。

3、凡是问够不够,能不能等的题,都要三大步:

①计算、②比较、③答题。→别忘了比较这一步。

几个特殊数:

25×4=100,125×8=1000

4、相关公式:

因数×因数=积

积÷因数=另一个因数

5、两位数乘两位数积可能是(三)位数,也可能是(四)位数。

数学七年级下册知识点范文参考 2

第三单元 长方体和正方体

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽 -高

a=L÷4-b-h

宽=棱长总和÷4-长 -高

=L÷4-a-h

高=棱长总和÷4-长 -宽

h=L÷4-a-b

正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2

=2(ab+ah+bh)

无底(或无盖)

长方体表面积= 长×宽+(长×高+宽×高)×2

=2(ab+ah+bh)-ab

=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2

=2(ah+bh)

贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh

长=体积÷宽÷高 a=V÷b÷h

宽=体积÷长÷高 b=V÷a÷h

高=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a =a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L=1dm3 1ml=1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体 =V现在-V原来

也可以 V物体 =S×(h现在- h原来)

V物体 =S×h升高

8、【体积单位换算】

大单位× 进率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位× 进率=小单位

小单位÷进率=大单位

长度单位:

1千米 =1000 米 1 分米=10 厘米

1厘米=10毫米 1分米=100毫米

1米=10分米=100厘米=1000毫米

(相邻单位进率10)

面积单位:

1平方千米=100公顷

1平方米=100平方分米

1平方分米=100平方厘米

1公顷=10000平方米(平方相邻单位进率100)

质量单位:

1吨=1000千克

1千克=1000克

人民币:

1元=10角 1角=10分 1元=100分

数学七年级下册知识点范文参考 3

第四单元《运算律》

知识点一:加法交换律和结合律

1.加法交换律:两个数相加,交换加数的位置,和不变。用字母表示为:

a+b=b+a

2.加法结合律:三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。用字母表示为:

(a+b)+c=a+(b+c)

知识点二:应用加法运算律进行简便计算

在连加计算中,当某些加数相加可以凑成整十、整百、整千的数时,运用加法运算律可使计算简便。

口诀:连加计算仔细看,考虑加数是关键。整十、整百与整千,结合起来更简单。交换定律记心间,交换位置和不变。结合定律应用广,加数凑整更简便。

知识点三:减法的运算性质1

一个数连续减去两个数等于这个数减去这两个减数的和。用字母表示:

a-b-c=a-(b+c)

减法的运算性质2

一个数减去两个数的和等于这个数连续减去和里每个加数。

知识点四:乘法的交换律和结合律

1.乘法交换律:两个数相乘,交换乘数的位置,积不变。用字母表示为:

a×b=b×a

2.乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘;或者先把后两个数相乘,再和第一个数相乘,积不变。用字母表示为:

(a×b)×c=a×(b×c)

知识点五:应用乘法运算律进行简便计算

在连乘计算中,当某两个乘数的积正好是整十、整百、整千的数时,运用乘法运算律可使计算简便。

运用分解的方法,将某个乘数拆分成几个数相乘的形式,使其中的乘数与其他乘数的乘积“凑整”。

乘除的规律:先乘后除等于先除后乘。

除法的运算性质:(1)一个数连续除以两个数(每次都能除尽)等于这个数除以这两个除数的积。

除法的运算性质:(2)一个数除以两个数的积等于这个数连续除以积里每个乘数。

知识点六:乘法分配律

乘法分配律特别要注意“两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加”中的分别两个字。

注意:1、一定要括号外的数分别乘括号里的两个数,再把积相加。乘法对于减法的分配律是括号外的数分别乘括号里的两个数,再把积相减。

2、两个积中相同的因数只能写一次)

数学七年级下册知识点范文参考 4

1. 认识倒数

(1)倒数的意义:乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。

(2)求一个数的倒数

①求分数的倒数:交换分子和分母的位置即可。

②求整数的倒数(0除外):先把整数看作分母是1的假分数,然后交换分子、分母的位置即可。

③求小数的倒数:先把小数化成分数,再交换分子、分母的位置。

2. 分数的除法

(1)分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)分数除法的计算:一个数除以一个不为0的数,等于乘这个不为0的数的倒数。

(3)分数的四则混合运算:与整数的四则混合运算的运算顺序相同。

① 先乘除,后加减;

② 如果有括号,要先算括号里面的。

(4)解决问题,这里主要包含三种类型的题。

① 已知一个数的几分之几是多少,求这个数。

方法一:设单位“1”的量为x,然后列方程解答。

方法二:已知量÷已知量占单位“1”的几分之几=单位“1”的量。

② 已知比一个数多(或少)几分之几的数是多少,求这个数。

方法一:设单位“1”的量为x,然后列方程解答,所依据的数量关系是,单位“1”的量×(1 ± 几分之几)=已知量。

方法二:先确定单位“1”的量,计算出已知量占单位“1”的几分之几,再根据分数除法的意义列式解答。

③ 已知两个数的和或差以及这两个数之间的倍数关系,求这两个数。

先找出单位“1”的量并设为x,用含有x的式子表示出另一个量,再根据两个数的和或差列方程解答。

(5)工程问题

工作总量=工作效率×工作时间

工作效率=工作总量÷工作时间

工作时间=工作总量÷工作效率

数学七年级下册知识点范文参考 5

第一单元《认识更大的数》

1、认识数级、数位、计数单位,并了解它们之间的对应关系。

2、十进制计数法:相邻两个计数单位之间的进率是十,也就是十进制关系。

3、数数:能一万一万地数,十万十万地数,一百万一百万地数……

4.亿以内数的读数方法:含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在每级末尾的零不读,在每级中间的零必须读。中间不管有几个零,只读一个零。

5.亿以内数的写数方法:从高位写起,按照数位的顺序写,中间或末尾哪一位上一个也没有,就在那一位上写0。

6.比较数大小的方法:多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。

7.改写以“万”或“亿”为单位的数的方法:以“万”为单位,就要把末尾的四个0去掉,再添上万字;以“亿”为单位,就要把末尾八个0去掉,再添上亿字。

8.用四舍五入法保留近似数的方法:根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。

TAG标签: 数学 知识点

数学七年级下册知识点范文参考_精选范文网

此书名为“知识不是力量”,目的不是要宣扬知识无用论,而是希望借此名重新思考学习的本质;下面小编给大家分享一些北师大版数学二年级知识,希望能够帮助大家,欢迎阅读!北师大版数学二年级知识1第一单元 加与
推荐度:
点击下载文档文档为doc格式